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The Box scheme has been used along with the Reyhner and Fiugge-Lots approximation 
and a nonlinear eigenvalue approach to inverse boundary-layer flows to compute flows 
with separation and reattachment. The approximate reverse flow region is corrected by a 
downstream-upstream iteration procedure similar to that introduced by Klemp and Acrivos, 
but implemented quite ditferently, and it converges extremely fast. A careful look at the 
convergence properties and the occurence of very small oscillations suggests several smooth- 
ing procedures which can be used for very severe cases of reverse flow. 

1, INTRODUCTION 

It had long been believed that boundary-layer theory was inadequate to describe 
flows with separation and regions of reverse flow. Indeed it was shown by Goldstein [9] 
that the solution of the “standard” boundary-layer problem (i.e., pressure gradient 
givenj may have a singularity at the point of separation. However Cal:herall and 
Mangler [5] were able to compute what seemed to be smooth solutions beyond 
separation. To do this they replaced the standard boundary-layer problem by a 
nonstandard one in which the displacement thickness is specified and the external 
flow velocity, or equivalently the downstream pressure gradient, is not specified. 
Folloiving this basic work there have been several recent computations of laminar 
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boundary layers with displa.cement thickness and shear-stress prescribed in regions 
where the shear-stress is ,negative; see, for example: Klineberg and Steger rf.51, 
Horton [IO], Carter [2, 31, Carter and Wornum [4], and Williams [17, 181. A brief 
clear discussion of the problem of singularities US regular flow at separation is given by 
Brown and Stewartson [l]. 

In this paper we present another method, employing the Box-scheme for computing 
boundary layers with reverse flows for laminar situations. It is based on previous 
methods we have developed for what we called inverse boundary-layer problems 
[7, 121, and for reverse flow calculations 18, 161. To adapt these methods to the case of 
reverse flow, we first make use of the approximation due to Reyhner and Flugge- 
Lotz [16]. This approximation, which is to drop the UU, term wherever u becomes 
negative, is common to most such computations. Then we correct this approximation 
by a sequence of downstream-upstream iterations. We have developed two distinct 
techniques for solving inverse boundary-layer problems: the nonlinear eigenvalue 
method [12, 171 and the Mechul-function method 17, 81. Both methods have been 
successful in application to separating flows. However, the eigenvalue method as 
formulated by Williams [17] seems to be more efficient and so we shall only describe 
its application here. The downstream-upstream iterations are very much in the spirit 
of the work of Klemp and Acrivos [14] but our implementation of their idea is quite 
different. 

In Section 2 we formulate the standard and inverse boundary-layer problems for 
laminar flows. Then, in Section 3 we describe the following numerical procedures: 
in 3.1 the nonlinear eigenvalue method via the Box-scheme, in 3.2 the Reyhner- 
Flugge-Lotz approximation for reverse flows, and in 3.3 an upstream-downstream 
iterative procedure for improving the approximation, Some calculations using these 
methods on a problem introduced by Carter [3] are presented in Section 4 along 
with a discussion of the results. The iterations of Section 3.3 converge very fast even 
for cases of large reverse flow and this is one of the most attractive features of our 
method. The method has been used with equal success on several other reverse 
flow problems, but the examples of Carter seem to be the most severe test. 

2. STANDARD AND INVERSE BOUNDARY-LAYER PROBLEMS 

For steady incompressible plane flows the boundary-layer approximations to the 
Navier-Stokes equations are: 

Continuity equation: 

x-Momentum equation: 

(2.2) 
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Obviously the approximations leading to (2.3) imply that the pressure varies only 

in the downstream direction, p = p(x). However, the Mechul-function procedure E8f 
essentially neglects this fact, as fat as the numerical work is concerned, and employs 
directly difference approximations to (2.3). We shall not use this technique in tbe 
present Work. 

The usual boundary conditions are, for a fixed rigid surface at :i = 0, say: 

21(x, 0) = v(x, 0) = 0 (5.5) 

and as the freestream is approached, y ---f ys, , say 

If(X, y=) = a,(x) (2.6a) 

Also, at the edge of the boundary layer the pressure and the free stream velocity: ZL,JX)~ 
must satisfy the inviscid Euler equation: 

au,(x) I apy(x, J.L-) if,(X) y&- = - - 
P ax . 

In “standard” problems either U,(X) or p(x) is specified and then p(x) or u,(x), respec- 

tively, is determined from (2.6b). 
However, in our present inverse problems we specify neither U,(X) nor p(x)- but 

rather the displacement thickness: 

(2.7) 

By introducing a stream function we can, as usual, satisfy the continuity equation 
and replace the integral constraint in (2.7) by a simple boundary condition. Thus, 
in terms of a reference length, L, and a velocity, tiO , we introduce the dimensionless, 
quantities: 

‘The stream function #(F, jT) is to be determined such that 
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Then (2.1) is satisfied and with the scaling (2.8), we get from (2.2) through (2.4), using 
primes to denote y-differentiation: 

j’ = 0. (2. lob) 

The boundary conditions (2.5) on the body become: 

#, 0) = #(if, 0) = 0 (2.11) 

The conditions (2.6) at the edge of the boundary layer become: 

(2.12a) 

(2.12b) 

Finally, the specification of the displacement thickness (2.7) now simplifies, using 
#(Z, 0) = 0, to the boundary condition: 

#(X, ym) = ii,(F)[jjm - 8*(F)]. (2.12c) 

2.1. “Initial” Data 

The standard problem: (2.1Oa) subject to (2.11) and (2.12a), or the inverse problem: 
(2.10a,b) subject to (2.11) and (2.12a,b,c) both require the specification of the flow 
field at some upstream location, say at x = x0 , to complete the formulation. The 
specified velocities must be consistent with the boundary layer equations or must 
come from an actual flow field. If they are not chosen with some care, then non- 
physical disturbances and/or spatial oscillations may occur for x > .x~ in the computed 
solutions. 

Appropriate initial data are obtained by either computing them or using experi- 
mental data. For laminar flows with u, - x (stagnation point flow) or 21, = 
const(flat-plate flow) we use similarity variables to generate the initial conditions. 
Using the new variables, in terms of those in (2.8) with the bars dropped, 

the Eqs. (2.1)-(2.4) can be reduced to: 

f" + 
WI + 1 --y-+f” + ?n[l - (f’yq = x[f’fj, -f’lf,]. (2.14) 
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EIere primes denote S/&I and m is a dimensionless pressure gradient parameter 
defined by 

x du me--e* 
II, dx 

The boundary conditions (2.5) and (2.6a) become 

f(x, 0) = f’(x, 0) = 0; f’(x, -qd = 1 (2.16) 

There are many accurate procedures for the numerical solution of (2.14)-(2.16) on. 
0 & x < x,, , say, Then by resealing the computed solution at s = .Y, to the variables 
in (2.8) we obtain initial data. Of course the point x0 must be upstream of the point 
of separation. 

3. NUMERICAL PROCEDURES 

We first formulate the inverse problem (2.10a,b) subject to (2.11) and (2.12a,b,c) 
in the appropriate first order form for the application of the Box method. Dropping 
bars for convenience, (2.10) becomes 

In (3.1~) we have introduced the coefficient 0 which will be used to implement the 
Reyhner-Flugge-Lotz approximation. For the present we simply observe that 
with 6 = 1 the system (3.1) is equivalent to (2.10). The boundary conditions (2.11) 
become : 

qK% 0) = 0, (3.h) 

U(x, 0) = 0; <3.25;1 

while at the edge of the boundary layer (2.12b,c) become on eliminating u,(x) by 
means of (2.12a): 

(3.34 

Yxx> Ym) = wx, Ya)[-I, - S”(x)]= (3.3bj 
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Note that we now have four boundary conditions, (3.2a,b)-(3.3a,b), to go with the 
system of four first order equations (3.1). So our system is at least formally consistent. 
One of the boundary conditions (3.3a), is nonlinear but this offers no particular 
difficulty since the differential equations are also nonlinear. This is essentially the 
Mechul function formulation of our problem and in this particular case the Mechui 
(special unknown) function is the pressure, p(x, y). Since (3.ld) implies that p is a 
function of x only, several alternatives to the Mechul-function approach are possible. 
For the extension to problems in which p does depend on y, e.g., where curvature 
effects are taken into account, the Mechul-function approach would appear to be 
particularly convenient. But for the remainder of this paper we shall use p = p(x) 
and thus drop (3.ld). 

3.1. The Nonlinear Hgerzvalue Scheme 

We first show how to solve (3.1) subject to (3.2), (3.3) over some interval, say, 
[X ,, , xlV] which does not contain a region of flow reversal or of separation and 
reattachment. Then the simple modifications required to include such phenomena will 
be introduced in Sections 3.2 and 3.3. We use the Box-scheme introduced by Keller 
[l I] and employed to solve a variety of boundary-layer flow problems (see for instance 
the text of Cebeci and Bradshaw [6]). We assume known the initial data (#O, U”, V”] 
on x = x0 as discussed in Section 2.1. Of course, we set p(xo) = p”, a constant. 
Then on x0 < x < x,, , 0 < y ,< ym we place a possibly nonuniform net: 

dX0 - - 0, x, = X,-l + k, ) 1 < n < N 

Yo = 0, J’j = yj-1 + hj 3 
(3.4) 

1 <j<J; YJ = Ym 3 

At each point (x,, , yi) of this net we write the approximate flow quantities as 
(Q, 17,~, Vp) and p”. For any such net-function, say ~z’~~, we use the following 
notation for averages and difference quotients: 

(3.5) 

The Box scheme difference approximations to (3.1) can now be simply defined as: 

(3.6b) 
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(3.7ai 

(3.B) 
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The boundary conditions (3.2), (3.3) are approximated by: 

I)()” = 0 

uon = 0 

(Kc) 

#J?Z = UJQ, - 6 (A$]. (3,Sd) 

For each fixed 11 in 1 < FZ ,( Nthe system (3.6) with 1 < j ,( Jcontains 3J equations 
and with the four equations in (3.7) this yields 3J + 4 equations for as many unknowns 
(&“, U,“, Vj”>, 0 < j < J and p”. As we shall see, p7! plays a distinguished role in the 
solution procedure and behaves very much as a (noniinear) eigenvalue parameter. 

Assuming all quantities known at x = x,-~ we solve this nonlinear a!gebraic 
system by Newton’s method. First we write (3.7a,b), then in order (3.6c,a,b> for 
1 < j < J and finally (3.7c,d). Then we introduce the iterates: 

@.iLl __ $“A+ $gLi, qL”‘l E qLi+ s(Jy, pn,i+l = pi + &pi, etc. 

into (3.6) (3.7), ordered as indicated, and drop quadratic and higher-order terms 
in the corrections 8y’i = (SZJT:~, 8Uj12sd c?V;““)~, Spn~i~ This yieIds a linear system of 
3J f 4 equations, the first 3J + 3 of which can be written as 

Here A”~i has the block tridiagonal structure: 

An.’ __ 

n,i n,i 
AJ BJ 

(3.83-t) 

with eg* = (0, 0, 1). 
The components of the 3 x 3 matrices (AT,<, i?;‘“, Cj”7i) and the inhomogeneous 
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3-vectors rpyi can easily be determined by carrying out the above indicated procedure. 
They are given explicitly in Appendix I, Eqs. (Al)-(A4). 

To solve (3.8a) we use block triangular decomposition. But Keller [13] has pointed 
out that for boundary-value problems with more boundary conditions at the front end 
than at the back, the elimination can be performed more efficiently by reversing the 
order of the equations. This is equivalent to performing on the given system a UL 
decomposition rather than an LU decomposition. So we factor Anvi in the form 

A?12 = un.iL%i 
(3.9) 

where Pi is unit upper triangular. Then backward and forward substitutions on the 
vectors IFi and E, yield the vectors Yn,i, Z”si which satisfy: 

An,iy",i = Rn,i (3.1Oa) 

A?z,iz”,i = E (3. lob) 

The solution of (3.8a) is given by 

An,i = yn,i 8Pp”‘i z”,” 
k” 

(3.11) 

and so we need only to determine Spnsi. 
We recall that the linearized form of (3.7d) which is 

f%p - [y&r - 6 (xn)] sushi = [YJ - 8 (x,)] up - *pi (3.12) 

has been excluded from (3.8a). Thus, using the expressions for S#TSi and SiJF7i from 
(3.11) in (3.12) yields a linear equation for Sp n,i. The value thus determined is then 
used in (3.11) to give LP*~. The factorizations (3.9) and solution of (3.10a,b) are done 
efficiently taking full account of the zeros occurring within the 3 x 3 blocks of (3.8b). 

In the nonlinear eigenvalue method described in [12], a different class of problems 
was considered (i.e., the shear stress at y = 0 was specified). Then we had no (3.7d) 
and used the extra condition at y = 0 to determine the pressure. This was done by a 
sequence of inner- and outer-iterations which are here replaced by the need to solve 
two linear systems in (3.10) (i.e., the equivalent of one inner and one outer iteration). 

The Newton iterations are terminated at the first i-value for which 

The error tolerance, E, is usually taken to be 10-6. Quadratic convergence is obtained 
in all of our calculations, that is 
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provided the initial guess is sufficiently accurate. This is usually assured by the choice 

After the convergence test has been passed we proceed to the next downstream station, 
x n+1 = xn + kzil. If reverse flow is anticipated, which can be signaled by small or 
negative values of ViTz or UItZ, we alter the procedure as indicated in Section 3.2. 

3.2. Reverse Flow: Reyhner-Flugge-Lotz Approximation 

If the Now seems about to reverse, however this is decided, we implement the 
Reyhner-Flugge-Lotz approximation. In effect this amounts to dropping the 
transport term tlu, in the ;r-momentum equation wherever LI becomes negative. 
Since this is a nonlinear effect, it is done in conjunction with the Newton iterates. 

Assuming we have computed the ith Newton iterate at station x, we then perform 
i-he tests: 

[U]& < 0 j = 1, 2 ,..., 6. j3.lSj 

If this velocity is negative for some j value, then for that value of j we set @ = 0 
in (3.6~) and, correspondingly, i3~& = 0 in (A2) and (A5). Otherwise we simply 
retain B = 1. The next Newton iterate is computed with the possibly altered data, 
resulting from the tests (3.19, used in (3.8). The convergence tests (3.13) and the 
procedure for generating initial guesses (3.14) are retained unaltered. The test (3. IS) 
can also be used to sense the onset of reverse flow. It was used in all of our calculations. 

When the entire region of flow reversal has been traversed by the above procedure, 
it is possible to compute more accurate approximations by inciuding the neglected 
momentum transport terms. This may require an additional iterative procedure 
and/or an altered difference scheme in which downstream data can influence upstream 
data, at least where Uj” < 0. Such procedures have been included by Carter [3] and 
Williams [17]. We have adopted the DUIT scheme of Williams [17] to improve the 
accuracy and it is described next. 

3.3. Do~~Mstreanz-Upstreallz Iterations 

To correct the Reyhner-Flugge-Lotz approximation we use an iterative procedure, 
The downstream pass of the iteration seeks to solve the inverse problem as in 3.1 but 
in the currently determined region of reverse flow the term hiar/‘las is computed from 
data determined during the previous upstream pass. After any downstream pass, 
including that of Section 3.2, we can employ an upstream pass. This computation is 
essentially confined to the reverse flow region. Hence the sweep is in the direction of 
the flow and it is stable. This idea was introduced into boundary layer theory by 
Klemp and Acrivos [14]. 

More precisely, let y = ye(x) for xs < x < xR denote the curve on which 
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U[x, yO(x)] = 0. The Reyhner-Flugge-Lotz calculations of 3.2 yield a first approxi- 
mation to J),,(X) and x, , the reattachment point. Then the upstream sweep solves, 
from x = xR to x = x, , a standard boundary-layer problem with U specified at the 
nearest net point above the current J',,(X) and with the pressure gradient also specified 
from the last downstream sweep. To solve this standard problem, only trivial modifi- 
cations are required in the scheme of 3.1. First we set 8pn;i G 0 and do not bother to 
compute the Zn,i. We use 0 = 1 and the boundary condition SUJ, = 0 where 
(x, , Jam,) is the first netpoint above [x, , yo(xn)]. Obviously the order of the linear 
systems to be solved changes with the streamwise location, x, . The Newton con- 
vergence criterion is employed as in (3.13). 

The next downstream sweep starts at the x-station just above, or at, separation 
using the data retained there. Again when (3.15) holds, we set 0 = 0 but only in (3.8b), 
not in (3.8~). Indeed the appropriate adjustment is trivially made by including the 
entire term U a.Ujax in the inhomogeneous term P.i of (3.8a) and computing it from 
the latest upstream sweep data. We use (3.13) and (3.14) unaltered in these sweeps. 
Of course, the pressure as well as the reverse flow boundary, J$x), may change during 
the downstream sweep which is continued until reattachment occurs. 

The sequence of downstream-upstream iterations is continued until some appro- 
priate convergence criterion is satisfied. It is not clear what the most appropriate 
criterion would be. Some parts of the reverse flow region seem to be somewhat less 
well defined, but errors there do not seriously affect the forward flow; so the most 
reasonable criterion might be to check the profiles at reattachment, since this would 
assure t-he accuracy of initial conditions for continuing the solution downstream. 

4. RESULTS 

We present here results from a series of test calculations employing the procedures 
of Section 3. Pn particular, two cases with separation and reattachment studied by 
Carter [3] have been examined in some detail. These laminar flows have displacement 
thickness distribution given by: 

i 

1.7208(x)l/“, 1.0 <x <x,; 
6*(x) = a, + ul(x - Xl) + n,(x - x1)2 + u3(x - x,)3, x1 <x <x,; (4.1) 

$ + 8,(x - x*)2 + Z3(x - x*)3, x.2 d x < x3. 

Here the coefficients are 

a, = 1.7208(~,)~/", a, = (0.5)(1.7208)/(x1)“/” 

ug = (0.5/o,)[6/&@&, - ad - 4~1, a3 = 2/d,3[r1,/2a, - (6&x - q)] (4 2) 

Li, = s&3,, i2 = -1/4,2[3(6$,,, - 2.25)], ii3 = 1/4,3[2(6&,, - 2.25)] 

d =x*-x1, d, =x3-x*, x1 = 1.065, x, = 1.35, x3 = 1.884. 
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The first flow with sg,, = 5.6, is referred to as Case A, and the second flow with 
S&,, = 8.6, is referred to as Case B. The two displacement thickness distributions are 
shown in Figures 1 and 2. 

Comparison of the present use of the Reyhner-Flugge-Lotz approximation with 
those of Carter [3] is shown in Figures 1 and 2. The present calculations were started 
at I = 0 by solving the governing equations in transformed variables for the standard 
problem. Then at x = 1 the method of Section 3.- 3 was used to solve the inverse 

Frc. 1. Local skin-friction distribution for Case A. 

problem with the equations expressed in physical variables. As can be seen, the 
present results agree well with those of Carter. Of course the way in which Carter 
implemented the Reyhner-Flugge-Lotz approximation is slightly different from that 
used here. The computer time was less than 10 seconds on a CDC 6600 for our fine 
grid of over 21,000 points (ax = 0.005, dy = 0.1). At ail s-stations, including 
regions of separated flow, the convergence was quadratic and required only two to 
four iterations for both cases. The observed error at the termination of the iterations 
was iO-8. Carter required an average of 14 and 28 iterations: at each s-station for 
cases A and B, respectively. 

We also applied the downstream-upstream iteration scheme described in Section 3.3 
to the cases A and B considered by Carter. The case B is obviously more severe, but 
the diierence between the two cases does seem to be more marked than the ratio 
8.615.6 of the peak displacement thicknesses might suggest. 

Table I illustrates the rapid convergence of the scheme for case A. Typical skin- 
friction values in the reverse flow region are given for successive downstream and 
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FIG. 2. Local skin-friction distribution for Case B. 

TABLE I 

Convergence of Negative Skin-Friction Values for Carter Case A 

NODS x = 1.2 x = 1.3 x = 1.4 x = 1.5 x = 1.6 

0 0.0449 0.0496 0.0679 0.0881 0.0560 

0.0458 0.0525 0.0689 0.0855 0.0543 

1 0.0453 0.0492 0.0704 0.0900 0.0529 

0.0451 0.0495 0.0709 0.0895 0.0530 

2 0.0452 0.0492 0.0706 0.0902 0.0529 

0.0452 0.0489 0.0707 0.0901 0.0529 

3 0.0452 0.0492 0.0706 0.0903 0.0529 

upstream sweeps computed with Ax = 0.01, dq’ = 0.2, ~~~~~ = 12. NODS stands 
for the number of downstream sweeps with the initial Reyhner-Flugge-Lotz sweep 
counted as zero, thus the NODS count gives the number of pairs of up-down sweeps 
after the initial approximations. The rows without a NODS count give the values 
obtained in the upstream sweeps; the converged results are indistinguishable from 
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Carter’s global iteration results in Fig. 1. We note that Carter required 114 of his 
global iterations for this case (on a fine grid). 

A phenomenon which cannot be seen from the sample values is the occurrence of 
very small oscillations in the x-direction. They are negligible to graphical accuracy, 
and could not be shown in Fig. 1. But differencing to four decimals showed that for 
NODS = 0, their magnitude was largest near separation and decayed slowly, whereas 
for the converged solution their magnitude had been reduced considerably near 
separation but had become more marked towards reattachment. 

When case B was attempted with the same step lengths, a higher NODS count was 
needed but also the oscillations were larger. Halving the step lengths in each direction 
reduced the magnitude of the oscillations considerably, and did not appear to affect 
the rate of convergence. Thus the oscillations are not due to numerical instabilities. 
Table II gives some typical values of the skin friction obtained in successive down- 
stream and upstream sweeps with LIX = 0.005, Lly = 0.1, ymaX = 15. 

It would appear that over most of the range these values have settled to three 
decimals and perhaps almost to four, except that the peak near reattachment is siill 

steepening up. These values are, in fact, hardly distinguishable from Carter’s graphica 

TABLE II 

Convergence of Negative Skin-Friction Values for Carter Case B 

NODS x = 1.2 x = 1.3 x = 1.4 x -= 1.5 x = 1.6 x = I,? 

0 0.0418 0.0282 0.0364 0.0643 0.1339 0.1195 

0.0475 0.033s 0.0442 0.0717 0.1315 0.%!22 

1 0.0383 0.0234 0.0384 0.0741 0.1537 0.0972 

0.0347 0.0266 0.0427 0.0782 0.1520 0.0982 

2 0.0403 0.0231 0.0380 0.0767 0.1607 0.0927 

0.0390 0.0225 0.0397 0.0789 0.1591 0.0933 

3 0.0403 0.0233 0.0370 0.0774 0.1638 O.6917 

0.0411 0.0216 0.0376 0.0785 O.i624 0.0920 

4 0.0400 0.238 0.0363 0.0772 0.1653 0.0916 

0.0408 0.0222 0.0363 0.0780 0.1646 O.O9i? 

5 0.0398 0.0242 0.0358 0.0770 0.1664 0.0917 

0.0401 0.0230 0.0356 0.0776 0.1661 0.0917 

6 0.0398 0.0244 0.0355 0.0768 0.1672 0.0916 

0.0397 0.0236 0.0353 0.0773 0.1672 0.03!6 

7 0.0398 0.0243 0.0354 0.0767 0.167s 0.0913 
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results based on his global iteration procedure which required 166 iterations. At this 
stage the oscillations in the x-direction would be just noticeable to graphical accuracy. 
However, if the downstream-upstream sweeps are continued, although the peak values 
near separation seem to settle down, eventually the magnitude of the oscillations 
increases. This is most noticeable near x = 1.3, where the skin friction has a negative 
maximum, i.e., where the reverse flow is closest to separating again. Indeed, extra- 
polating on the two cases, A and B, it would not be surprising if a further eddy 
appeared with a relatively small increase in S&, , so that it is not unreasonable to 
suppose that this would be a highly sensitive region. The oscillations can be avoided 
by smoothing before each sweep. However, although the convergence of the down- 
stream sweeps is then much more convincing, as also is the convergence of the up- 
stream sweeps, they converge to slightly different limits about 0.001 apart. The 
average of these two limits is not necessarily more accurate since the smoothing tends 
to depress the build-up of the large gradients in the peak regions. 

There are at least three ways of improving the situation by using a smoothing 
formula, say 11$ = roz + $&Vi , namely (1) post smoothing: merely smooth the 
results of the standard DUIT scheme, (2) single smoothing: smooth the results of 
each upstream sweep before using them in the next downstream sweep, (3) double 
smoothing: smooth each sweep before being used in the next. Some typical results 
are presented in Table III. The two values of x chosen are roughly at the smallest and 

TABLE III 

Comparison of Smoothing Procedures 

x = 1.3 x = 1.64 

NODS Post Single Double Post Single Double 

0.0229 0.0229 0.0229 0.1855 0.1855 0.1853 

0.0234 0.0234 0.0234 O.IS.51 0.1851 0.1849 

0.0239 0.0239 0.0239 0.1848 0.1847 0.1845 

0.0243 0.0243 0.0242 0.1846 0.1844 0.1842 

0.0245 0.0245 0.0245 0.1844 0.1843 0.1841 

0.0246 0.0246 0.0246 0.1843 0.1841 0.1840 

0.0247 0.0246 0.0246 0.1842 0.1841 0.1839 

largest values of negative skin friction. Only values from downstream sweeps are given. 
One must conclude there is little difference between the three results. Since the single 
smoothing involves only one smoothing every pair of sweeps, produces smooth 
downstream values and gives more uniform convergence than the standard scheme, 
we recommend this as the most reliable procedure. 
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APPENDIX. MATRIX AND VECTOR Co~~o~e~rs FOR SECTION 3.3 

The internal details of the 3 x 3 blocks in (3.8b) are 

except that Ai” and C;“9i are irrelevant and 

The coefficients in (AI) are: 

The inhomogeneous terms have the components 
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